# University de Piura (UDEP) Sillabus 2022-I

# 1. COURSE

CS3T2. Omic Data Modeling (Elective)

2. GENERAL INFORMATION

| 2.1 Credits                | : | 4                                            |
|----------------------------|---|----------------------------------------------|
| 2.2 Theory Hours           | : | 2 (Weekly)                                   |
| 2.3 Practice Hours         | : | 2 (Weekly)                                   |
| 2.4 Duration of the period | : | 16 weeks                                     |
| 2.5 Type of course         | : | Elective                                     |
| 2.6 Modality               | : | Face to face                                 |
| 2.7 Prerrequisites         | : | CS2T1. Computational Biology. $(7^{th}$ Sem) |

## 3. PROFESSORS

Meetings after coordination with the professor

# 4. INTRODUCTION TO THE COURSE

The use of computational methods in the biological sciences has become one of the key tools for the field of molecular biology, being a fundamental part of research in this area.

In Molecular Biology, there are several applications that involve both DNA, protein analysis or sequencing of the human genome, which depend on computational methods. Many of these problems are really complex and deal with large data sets.

This course can be used to see concrete use cases of several areas of knowledge of Computer Science such as Programming Languages (PL), Algorithms and Complexity (AL), Probabilities and Statistics, Information Management (IM), Intelligent Systems (IS).

# 5. GOALS

- That the student has a solid knowledge of molecular biological problems that challenge computing.
- That the student is able to abstract the essence of the various biological problems to pose solutions using their knowledge of Computer Science

# 6. COMPETENCES

Nooutcomes

Nospecificoutcomes

# 7. TOPICS

| Unit 1: Introduction to Molecular Biology (4) |                   |  |  |  |
|-----------------------------------------------|-------------------|--|--|--|
| Competences Expected: CS1                     |                   |  |  |  |
| Topics                                        | Learning Outcomes |  |  |  |
|                                               |                   |  |  |  |
| •                                             | • [Femilienity]   |  |  |  |
|                                               | • [Familiarity]   |  |  |  |
| •                                             | • [Assessment]    |  |  |  |
|                                               |                   |  |  |  |
| •                                             |                   |  |  |  |
|                                               |                   |  |  |  |
| <b>Readings</b> : [CB00], [SM97]              |                   |  |  |  |

# 8. WORKPLAN

# 8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

#### 8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

### 8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

## 9. PLANNING

| DATE       | TIME       | SESSION TYPE | PROFESSOR  |
|------------|------------|--------------|------------|
| See at EDU | See at EDU | See at EDU   | See at EDU |

#### **10. EVALUATION SYSTEM**

\*\*\*\*\*\*\*\* EVALUATION MISSING \*\*\*\*\*\*\*

#### 11. BASIC BIBLIOGRAPHY

- [CB00] P. Clote and R. Backofen. Computational Molecular Biology: An Introduction. 279 pages. John Wiley & Sons Ltd., 2000.
- [SM97] João Carlos Setubal and João Meidanis. Introduction to computational molecular biology. Boston: PWS Publishing Company, 1997, pp. I–XIII, 1–296. ISBN: 978-0-534-95262-4.