Contents

Contents

ontents	1
1. Course	2
2. General information	2
3. Professors	2
4. Introduction to the course	2
5. Goals	2
6. Competences	2
7. Topics	2
8. Workplan	8
8.1 Methodology	8
8.2 Theory Sessions	8
8.3 Practical Sessions	
9. Planning	
10. Evaluation System	8
11. Basic Bibliography	

University de Piura (UDEP) Sillabus 2022-I

1. COURSE

CS261. Intelligent Systems (Mandatory)

2. GENERAL INFORMATION

2.1 Credits	:	4
2.2 Theory Hours	:	2 (Weekly)
2.3 Practice Hours	:	2 (Weekly)
2.4 Duration of the period	:	16 weeks
2.5 Type of course	:	Mandatory
2.6 Modality	:	Face to face
2.7 Prerrequisites	:	MA203. Statistics and Probabilities. (4^{th} Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

Research in Artificial Intelligence has led to the development of numerous relevant tonic, aimed at the automation of human intelligence, giving a panoramic view of different algorithms that simulate the different aspects of the behavior and the intelligence of the human being.

5. GOALS

- Evaluate the possibilities of simulation of intelligence, for which the techniques of knowledge modeling will be studied.
- Build a notion of intelligence that later supports the tasks of your simulation.

6. COMPETENCES

Nooutcomes

Nospecificoutcomes

7. TOPICS

Competences Expected: a	
Topics	Learning Outcomes
 Overview of AI problems, examples of successful recent AI applications What is intelligent behavior? The Turing test Rational versus non-rational reasoning Problem characteristics Fully versus partially observable Single versus multi-agent Deterministic versus stochastic Static versus dynamic Discrete versus continuous Nature of agents Autonomous versus semi-autonomous Reflexive, goal-based, and utility-based 	 Describe Turing test and the "Chinese Room thought experiment [Usage] Determing the characteristics of a given problem that an intelligent systems must solve [Usage]
 The importance of perception and environmen- tal interactions 	
• Philosophical and ethical issues.	

Competences Expected: a Topics Learning Outcomes		
Outcomes		
he defining characteristics of an intelligen [Usage] eterize and contrast the standard agent archi- es [Usage] be the applications of agent theory to domain s software agents, personal assistants, and be e agents [Usage] be the primary paradigms used by learnin [Usage] astrate using appropriate examples how multi- systems support agent interaction [Usage]		

Unit 3: Basic Search Strategies (2)	
Competences Expected: a,j	
Topics	Learning Outcomes
 Problem spaces (states, goals and operators), problem solving by search Factored representation (factoring state into variables) Uninformed search (breadth-first, depth-first, depth-first with iterative deepening) Heuristics and informed search (hill-climbing, generic best-first, A*) Space and time efficiency of search Two-player games (introduction to minimax search) Constraint satisfaction (backtracking and local search methods) 	 Formulate an efficient problem space for a problem expressed in natural language (eg, English) in terms of initial and goal states, and operators [Usage] Describe the role of heuristics and describe the tradeoffs among completeness, optimality, time complexity, and space complexity [Usage] Describe the problem of combinatorial explosion of search space and its consequences [Usage] Compare and contrast basic search issues with game playing issues [Usage]

Topics	Learning Outcomes
 Stochastic search Simulated annealing Genetic algorithms Monte-Carlo tree search Constructing search trees, dynamic search space, combinatorial explosion of search space Implementation of A* search, beam search Minimax search, alpha-beta pruning Expectimax search (MDP-solving) and chance nodes 	 Design and implement a genetic algorithm solution to a problem [Usage] Design and implement a simulated annealing schedule to avoid local minima in a problem [Usage] Design and implement A*, beam search to solve problem [Usage] Apply minimax search with alpha-beta pruning the prune search space in a two-player game [Usage] Compare and contrast genetic algorithms with classic search techniques [Usage] Compare and contrast various heuristic searches via a-vis applicability to a given problem [Usage]

Unit 5: Reasoning Under Uncertainty (18) Competences Expected: a,j	
Topics	Learning Outcomes
 Review of basic probability Random variables and probability distributions Axioms of probability Probabilistic inference Bayes' Rule Conditional Independence Knowledge representations Bayesian Networks * Exact inference and its complexity * Randomized sampling (Monte Carlo methods (e.g. Gibbs sampling)) Markov Networks Relational probability models Hidden Markov Models 	 Apply Bayes' rule to determine the probability of a hypothesis given evidence [Usage] Explain how conditional independence assertions al low for greater efficiency of probabilistic systems [Us age] Identify examples of knowledge representations for reasoning under uncertainty [Usage] State the complexity of exact inference Identify methods for approximate inference [Usage]

Competences Expected: a,j		
Topics	Learning Outcomes	
 Definition and examples of broad variety of machine learning tasks, including classification Inductive learning Simple statistical-based learning, such as Naive Bayesian Classifier, decision trees The over-fitting problem Measuring classifier accuracy 	 List the differences among the three main styles of learning: supervised, reinforcement, and unsupervised [Usage] Identify examples of classification tasks, includin the available input features and output to be predicted [Usage] Explain the difference between inductive and deductive learning [Usage] Describe over-fitting in the context of a problem [Usage] Apply the simple statistical learning algorithm suct as Naive Bayesian Classifier to a classification tasks and measure the classifier's accuracy [Usage] 	

Competences Expected: a,j		
Topics	Learning Outcomes	
 Definition and examples of broad variety of machine learning tasks General statistical-based learning, parameter esti- mation (maximum likelihood) Inductive logic programming (ILP) 	 Explain the differences among the three main style of learning: supervised, reinforcement, and unsupervised [Usage] Implement simple algorithms for supervised learning, reinforcement learning, and unsupervised learning [Usage] 	
 Supervised learning Learning decision trees 	• Determine which of the three learning styles is an propriate to a particular problem domain [Usage]	
 Learning neural networks Support vector machines (SVMs) Unsupervised Learning and clustering 	• Compare and contrast each of the following tech niques, providing examples of when each strategy superior: decision trees, neural networks, and beli networks [Usage]	
 – EM – K-means 	• Evaluate the performance of a simple learning sy tem on a real-world dataset [Usage]	
Self-organizing mapsSemi-supervised learning	• Characterize the state of the art in learning theory including its achievements and its shortcomings [Ui age]	
 Learning graphical models Performance evaluation (such as cross-validation, area under ROC curve) 	• Explain the problem of overfitting, along with tech niques for detecting and managing the problem [Us age]	
• Application of Machine Learning algorithms to Data Mining (cross-reference IM/Data Mining)		

Readings : [RN03], [KF09], [Mur12]

Competences Expected: a,j		
Topics	Learning Outcomes	
 Computer vision Image acquisition, representation, processing and properties Shape representation, object recognition and segmentation Motion analysis Modularity in recognition Approaches to pattern recognition Classification algorithms and measures of classification quality Statistical techniques 	 Summarize the importance of image and object recognition in AI and indicate several significant applications of this technology [Usage] List at least three image-segmentation approaches such as thresholding, edge-based and region-base algorithms, along with their defining characteristics strengths, and weaknesses [Usage] Implement 2d object recognition based on contour and/or region-based shape representations [Usage] Provide at least two examples of a transformation of a data source from one sensory domain to another eg, tactile data interpreted as single-band 2d image [Usage] Implement a feature-extraction algorithm on readata, eg, an edge or corner detector for images or vectors of Fourier coefficients describing a short slice of audio signal [Usage] Implement a classification algorithm that segment input percepts into output categories and quantitatively evaluates the resulting classification [Usage] Evaluate the performance of the underlying feature extraction, relative to at least one alternative posible approach (whether implemented or not) in it contribution to the classification task (8), above [Usage] 	

Readings: [Nil01], [RN03], [Pon+14]

8. WORKPLAN

8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

9. PLANNING

DATE	TIME	SESSION TYPE	PROFESSOR
See at EDU	See at EDU	See at EDU	See at EDU

10. EVALUATION SYSTEM

******** EVALUATION MISSING *******

11. BASIC BIBLIOGRAPHY

- [De 06] L.N. De Castro. Fundamentals of natural computing: basic concepts, algorithms, and applications. CRC Press, 2006.
- [Gol89] David Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, 1989.
- [KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques Adaptive Computation and Machine Learning. The MIT Press, 2009. ISBN: 0262013193.
- [Mit98] M. Mitchell. An introduction to genetic algorithms. The MIT press, 1998.
- [Mur12] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. ISBN: 0262018020.
- [Nil01] Nils Nilsson. Inteligencia Artificial: Una nueva visión. McGraw-Hill, 2001.
- [Pon+14] Julio Ponce-Gallegos et al. Inteligencia Artificial. Iniciativa Latinoamericana de Libros de Texto Abiertos (LATIn), 2014.
- [RN03] Stuart Russell and Peter Norvig. Inteligencia Artifical: Un enfoque moderno. Prentice Hall, 2003.