Contents

Cont	
	Course
2.	General information
	Professors
4.	Introduction to the course
5.	Goals
6.	Competences
7.	Topics
8.	Workplan
	8.1 Methodology
	8.2 Theory Sessions
	8.3 Practical Sessions
	Planning
10	. Evaluation System
11	. Basic Bibliography

University de Piura (UDEP) Sillabus 2022-I

1. COURSE

CS221. Computer Systems Architecture (Mandatory)

2. GENERAL INFORMATION

2.1 Credits : 3

2.2 Theory Hours
2.3 Practice Hours
2 (Weekly)
2.4 Duration of the period
16 weeks
2.5 Type of course
Mandatory
Face to face

2.7 Prerrequisites : CS1D2. Discrete Structures II. (2^{nd} Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

A computer scientist must have a solid knowledge of the organization and design principles of diverse computer systems, by understanding the limitations of modern systems they could propose next-gen paradigms. This course teaches the basics and principles of Computer Architecture. This class addreses digital logic design, basics of Computer Architecture and processor design (Instruction Set architecture, microarchitecture, out-of-order execution, branch prediction), execution paradigms (superscalar, dataflow, VLIW, SIMD, GPUs, systolic, multithreading) and memory system organization.

5. GOALS

- Provide a first approach in Computer Architecture.
- Study the design and evolution of computer architectures, which lead to modern approaches and implementations in computing systems.
- Provide fine-grained details of computer hardware, and its relation with software execution.
- Implement a simple microprocessor using Verilog language.

6. COMPETENCES

Nooutcomes

Nospecificoutcomes

7. TOPICS

Unit 2: Machine level representation of data (8)		
Competences Expected: g		
Topics	Learning Outcomes	
 Bits, bytes, and words Numeric data representation and number bases Fixed- and floating-point systems Signed and twos-complement representations Representation of non-numeric data (character codes, graphical data) Representation of registers and arrays 	 Explain why everything is data, including instructions, in computers [Assessment] Explain the reasons for using alternative formats to represent numerical data [Familiarity] Describe how negative integers are stored in sign-magnitude and twos-complement representations [Usage] Explain how fixed-length number representations affect accuracy and precision [Usage] Describe the internal representation of non-numeric data, such as characters, strings, records, and arrays [Usage] Convert numerical data from one format to another [Usage] 	
Readings : [HH12], [PP05], [PH04], [JAs07], [HP06], [Par	00], [Stat0], [1 OH00]	

mpetences Expected: b,g pics	Learning Outcomes
pics	Learning Outcomes
 Basic organization of the von Neumann machine Control unit; instruction fetch, decode, and execution 	• Explain the organization of the classical von N mann machine and its major functional units miliarity]
\bullet Instruction sets and types (data manipulation, control, I/O)	 Describe how an instruction is executed in a class von Neumann machine, with extensions for three multiprocessor synchronization, and SIMD exe tion [Familiarity]
• Assembly/machine language programming	tion [ranimarity]
• Instruction formats	 Describe instruction level parallelism and haza and how they are managed in typical process
• Addressing modes	pipelines [Familiarity]
• Subroutine call and return mechanisms	• Summarize how instructions are represented at be the machine level and in the context of a symb
• I/O and interrupts	assembler [Familiarity]
• Heap vs. Static vs. Stack vs. Code segments	• Demonstrate how to map between high-level guage patterns into assembly/machine language tations [Usage]
	• Explain different instruction formats, such as dresses per instruction and variable length vs fi length formats [Usage]
	• Explain how subroutine calls are handled at the sembly level [Usage]
	• Explain the basic concepts of interrupts and I/O erations [Familiarity]
	• Write simple assembly language program segme [Usage]
	• Show how fundamental high-level programming of structs are implemented at the machine-langu- level [Usage]

Unit 4: Functional organization (8)			
Competences Expected: b,g			
Topics	Learning Outcomes		
 Implementation of simple datapaths, including instruction pipelining, hazard detection and resolution Control unit: microprogrammed Instruction pipelining Introduction to instruction-level parallelism (ILP) 	 Compare alternative implementation of datapaths [Assessment] Discuss the concept of control points and the generation of control signals using hardwired or microprogrammed implementations [Familiarity] Explain basic instruction level parallelism using pipelining and the major hazards that may occur [Usage] Design and implement a complete processor, including datapath and control [Usage] Determine, for a given processor and memory system implementation, the average cycles per instruction [Assessment] 		
Readings : [HH12], [PP05], [PH04], [JAs07], [HP06], [Par05], [Sta10], [PCh06]			

Competences Expected: b,g		
Topics	Learning Outcomes	
 Storage systems and their technology Memory hierarchy: importance of temporal and spatial locality Main memory organization and operations Latency, cycle time, bandwidth, and interleaving Cache memories (address mapping, block size, replacement and store policy) Multiprocessor cache consistency/Using the memory system for inter-core synchronization/atomic memory operations Virtual memory (page table, TLB) Fault handling and reliability Error coding, data compression, and data integrity 	 Identify the main types of memory technology (eg, SRAM, DRAM, Flash, magnetic disk) and their relative cost and performance [Familiarity] Explain the effect of memory latency on running time [Familiarity] Describe how the use of memory hierarchy (cache, virtual memory) is used to reduce the effective memory latency [Usage] Describe the principles of memory management [Usage] Explain the workings of a system with virtual memory management [Usage] Compute Average Memory Access Time under a variety of cache and memory configurations and mixes of instruction and data references [Assessment] 	
Readings : [HH12], [PP05], [PH04], [JAs07], [HP06], [Par	05], [Sta10], [PCh06]	

Unit 5: Memory system organization and architecture (8)

 Interrupt structures: vectored and prioritized, interrupt acknowledgment External storage, physical organization, and drives Buses: bus protocols, arbitration, direct-memory access (DMA) Introduction to networks: communications networks as another layer of remote access Multimedia support RAID architectures control and data transfers [Familiarity] Identify various types of buses in a computer system [Familiarity] Describe data access from a magnetic disk drive [Usage] Compare common network organizations, such a ethernet/bus, ring, switched vs routed [Assessment timedia access and presentation, from image fetch from remote storage, through transport over a communications network, to staging into local memory and final presentation to a graphical display [Familiarity] 	Competences Expected: b,g,i	
 Interrupt structures: vectored and prioritized, interrupt acknowledgment External storage, physical organization, and drives Buses: bus protocols, arbitration, direct-memory access (DMA) Introduction to networks: communications networks as another layer of remote access Multimedia support RAID architectures Control and data transfers [Familiarity] Identify various types of buses in a computer syster [Familiarity] Describe data access from a magnetic disk drive [Usage] Compare common network organizations, such a ethernet/bus, ring, switched vs routed [Assessment timedia access and presentation, from image fetce from remote storage, through transport over a communications network, to staging into local memory and final presentation to a graphical display [Familiarity] Describe the advantages and limitations of RAID and the properties of t	Topics	Learning Outcomes
	grammed I/O, interrupt-driven I/O • Interrupt structures: vectored and prioritized, interrupt acknowledgment • External storage, physical organization, and drives • Buses: bus protocols, arbitration, direct-memory access (DMA) • Introduction to networks: communications networks as another layer of remote access • Multimedia support	 Identify various types of buses in a computer system [Familiarity] Describe data access from a magnetic disk drive [Us age] Compare common network organizations, such a ethernet/bus, ring, switched vs routed [Assessment Identify the cross-layer interfaces needed for mul timedia access and presentation, from image fetch from remote storage, through transport over a communications network, to staging into local memory and final presentation to a graphical display [Familiarity] Describe the advantages and limitations of RAID ar

Unit 7: Multiprocessing and alternative architectures (8)			
Competences Expected: i			
Topics	Learning Outcomes		
 Power Law Example SIMD and MIMD instruction sets and architectures Interconnection networks (hypercube, shuffle-exchange, mesh, crossbar) Shared multiprocessor memory systems and memory consistency Multiprocessor cache coherence 	 Discuss the concept of parallel processing beyond the classical von Neumann model [Assessment] Describe alternative parallel architectures such as SIMD and MIMD [Familiarity] Explain the concept of interconnection networks and characterize different approaches [Usage] Discuss the special concerns that multiprocessing systems present with respect to memory management and describe how these are addressed [Familiarity] Describe the differences between memory backplane, processor memory interconnect, and remote memory via networks, their implications for access latency and impact on program performance [Assessment] 		
Readings : [HH12], [PP05], [PH04], [JAs07], [HP06], [Part	Joj, [Stat0], [FOH00]		

Unit 8: Performance enhancements (8)		
Competences Expected: g,i		
Topics	Learning Outcomes	
 Superscalar architecture Branch prediction, Speculative execution, Out-of-order execution Prefetching Vector processors and GPUs Hardware support for multithreading Scalability Alternative architectures, such as VLIW/EPIC, and Accelerators and other kinds of Special-Purpose Processors 	 Describe superscalar architectures and their advantages [Familiarity] Explain the concept of branch prediction and its utility [Usage] Characterize the costs and benefits of prefetching [Assessment] Explain speculative execution and identify the conditions that justify it [Assessment] Discuss the performance advantages that multithreading offered in an architecture along with the factors that make it difficult to derive maximum benefits from this approach [Assessment] Describe the relevance of scalability to performance [Assessment] 	
Readings : [HH12], [PP05], [PH04], [JAs07], [HP06], [Par	obj, [Staroj, [PONO6]	

8. WORKPLAN

8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

9. PLANNING

DATE	TIME	SESSION TYPE	PROFESSOR
See at EDU	See at EDU	See at EDU	See at EDU

10. EVALUATION SYSTEM

****** EVALUATION MISSING ******

11. BASIC BIBLIOGRAPHY

- [HH12] David Harris and Sarah Harris. Digital Design and Computer Architecture. 2nd. Morgan Kaufmann, 2012. ISBN: 978-0123944245.
- [HP06] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. 4th. San Mateo, CA: Morgan Kaufman, 2006.
- [JAs07] Peter J.Ashenden. Digital Design (Verilog): An Embedded Systems Approach Using Verilog. Morgan Kaufmann, 2007. ISBN: 978-0123695277.

- [Par05] Behrooz Parhami. Computer Architecture: From Microprocessors to Supercomputers. New York: Oxford Univ. Press, 2005. ISBN: ISBN 0-19-515455-X.
- [PCh06] Pong P.Chu. RTL Hardware Design Using VHDL. 1st. Wiley-Interscience, 2006.
- [PH04] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The Hardware/Software Interface. 3rd ed. San Mateo, CA: Morgan Kaufman, 2004.
- [PP05] Yale N Patt and Sanjay J Patel. Introduction to Computing Systems. 2nd. McGraw Hill, 2005.
- [Sta10] William Stalings. Computer Organization and Architecture: Designing for Performance. 8th. Upper Saddle River, NJ: Prentice Hall, 2010.