

SOCIEDAD PERUANA DE COMPUTACIÓN

School of Computer Science Sillabus 2021-I

1. COURSE

CS1D2. Discrete Structures II (Mandatory)

2. GENERAL INFORMATION 2.1 Credits 4 2.2 Theory Hours 2 (Weekly) : 2.3 Practice Hours : 2 (Weekly) 2.4 Duration of the period : 16 weeks 2.5 Type of course Mandatory : 2.6 Modality Face to face : 2.7 Prerrequisites CS1D1. Discrete Structures I. (1^{st} Sem) :

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

In order to understand the advanced computational techniques, the students must have a strong knowledge of the Various discrete structures, structures that will be implemented and used in the laboratory in the programming language.

5. GOALS

- That the student is able to model computer science problems using graphs and trees related to data structures.
- That the student applies efficient travel strategies to be able to search data in an optimal way.
- That the student uses the various counting techniques to solve computational problems.

6. COMPETENCES

- a) An ability to apply knowledge of mathematics, science. (Familiarity)
- b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Usage)
- i) An ability to use the techniques, skills, and modern computing tools necessary for computing practice. (Familiarity)

7. SPECIFIC COMPETENCES

- a3) Apply counting techniques in solving computer problems. ()
- **a9)** To use mathematical techniques that allow to delimit sums and to solve recurrences that reflect the computational costs of an algorithm. ()
- a13) Use count theory definitions to solve sorting or selection problems in a set of single and repeated elements. ()
- a14) Solve counting problems using generator functions. ()
- j1) Solve recurrence problems to simplify algorithmic complexity ()
- j2) Apply graph and tree theory for optimization and problem solving ()

8. TOPICS

Competences Expected: a,b,i		
opics	Learning Outcomes	
 Reticles: Types and properties. Boolean algebras. Boolean Functions and Expressions. Representation of Boolean Functions: Normal Disjunctive and Conjunctive Form. Logical gates. Circuit Minimization. 	 Explain the importance of Boolean algebra as a un fication of set theory and propositional logic [Assessment]. Explain the algebraic structures of reticulum and it types [Assessment]. Explain the relationship between the reticulum and the ordinate set and the wise use to show that a set is a reticulum [Assessment]. Explain the properties that satisfies a Boolean algebra [Assessment]. Demonstrate if a terna formed by a set and two in ternal operations is or not Boolean algebra [Assessment]. Find the canonical forms of a Boolean function [Assessment]. Represent a Boolean function as a Boolean circu using logic gates [Assessment]. 	

Competences Expected: a	
Topics	Learning Outcomes
 Counting arguments Set cardinality and counting Sum and product rule Inclusion-exclusion principle Arithmetic and geometric progressions The pigeonhole principle Permutations and combinations Basic definitions Pascal's identity The binomial theorem Solving recurrence relations An example of a simple recurrence relation, such as Fibonacci numbers Other examples, showing a variety of solutions Basic modular arithmetic 	 Apply counting arguments, including sum and product rules, inclusion-exclusion principle and arithmetic/geometric progressions [Familiarity] Apply the pigeonhole principle in the context of formal proof [Familiarity] Compute permutations and combinations of a set and interpret the meaning in the context of the particular application [Familiarity] Map real-world applications to appropriate countinformalisms, such as determining the number of way to arrange people around a table, subject to constraints on the seating arrangement, or the number of ways to determine certain hands in cards (eg, full house) [Familiarity] Solve a variety of basic recurrence relations [Familiarity] Analyze a problem to determine underlying recurrence relations [Familiarity] Perform computations involving modular arithmeti [Familiarity]

Readings : [Gri97]

TopicsLearning Outcomes• Trees - Properties - Traversal strategies• Illustrate by example the basic terminology of graph theory, and some of the properties and special cases of each type of graph/tree [Familiarity]• Undirected graphs• Directed graphs• Directed graphs• Directed graphs• Weighted graphs• Model a variety of real-world problems in computer science using appropriate forms of graphs and trees, such as representing a network topology or the orga- nization of a hierarchical file system [Familiarity]• Show how concepts from graphs and trees appear in data structures, algorithms, proof techniques (struc- tural induction), and counting [Familiarity]	Unit 3: Graphs and Trees (40) Competences Expected: a		
 Trees Properties Traversal strategies Undirected graphs Directed graphs Weighted graphs Spanning trees/forests Graph isomorphism Illustrate by example the basic terminology of graph theory, and some of the properties and special cases of each type of graph/tree [Familiarity] Demonstrate different traversal methods for trees and graphs, including pre, post, and in-order traversal of trees [Familiarity] Model a variety of real-world problems in computer science using appropriate forms of graphs and trees, such as representing a network topology or the organization of a hierarchical file system [Familiarity] Show how concepts from graphs and trees appear in data structures, algorithms, proof techniques (structural induction), and counting [Familiarity] Explain how to construct a spanning tree of a graph [Familiarity] 			
 Properties Traversal strategies Undirected graphs Directed graphs Weighted graphs Spanning trees/forests Graph isomorphism Charph isomorphism The properties and special cases of each type of graph/tree [Familiarity] Demonstrate different traversal methods for trees and graphs, including pre, post, and in-order traversal of trees [Familiarity] Model a variety of real-world problems in computer science using appropriate forms of graphs and trees, such as representing a network topology or the organization of a hierarchical file system [Familiarity] Show how concepts from graphs and trees appear in data structures, algorithms, proof techniques (structural induction), and counting [Familiarity] Explain how to construct a spanning tree of a graph [Familiarity] 	Topics	Learning Outcomes	
Readings : [Joh99]	 Properties Traversal strategies Undirected graphs Directed graphs Weighted graphs Spanning trees/forests Graph isomorphism 	 Demonstrate different traversal methods for trees and graphs, including pre, post, and in-order traversal of trees [Familiarity] Model a variety of real-world problems in computer science using appropriate forms of graphs and trees, such as representing a network topology or the organization of a hierarchical file system [Familiarity] Show how concepts from graphs and trees appear in data structures, algorithms, proof techniques (structural induction), and counting [Familiarity] Explain how to construct a spanning tree of a graph [Familiarity] 	

9. WORKPLAN

9.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

9.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

9.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

10. EVALUATION SYSTEM ********* EVALUATION MISSING *******

11. BASIC BIBLIOGRAPHY

- [Gri03] R. Grimaldi. Discrete and Combinatorial Mathematics: An Applied Introduction. 5 ed. Pearson, 2003.
- [Gri97] R. Grimaldi. Matemáticas Discretas y Combinatoria. Addison Wesley Iberoamericana, 1997.
- [Joh99] Richard Johnsonbaugh. Matemáticas Discretas. Prentice Hall, México, 1999.
- [Ros07] Kenneth H. Rosen. Discrete Mathematics and Its Applications. 7 ed. Mc Graw Hill, 2007.